70 research outputs found

    Receptive Field Block Net for Accurate and Fast Object Detection

    Full text link
    Current top-performing object detectors depend on deep CNN backbones, such as ResNet-101 and Inception, benefiting from their powerful feature representations but suffering from high computational costs. Conversely, some lightweight model based detectors fulfil real time processing, while their accuracies are often criticized. In this paper, we explore an alternative to build a fast and accurate detector by strengthening lightweight features using a hand-crafted mechanism. Inspired by the structure of Receptive Fields (RFs) in human visual systems, we propose a novel RF Block (RFB) module, which takes the relationship between the size and eccentricity of RFs into account, to enhance the feature discriminability and robustness. We further assemble RFB to the top of SSD, constructing the RFB Net detector. To evaluate its effectiveness, experiments are conducted on two major benchmarks and the results show that RFB Net is able to reach the performance of advanced very deep detectors while keeping the real-time speed. Code is available at https://github.com/ruinmessi/RFBNet.Comment: Accepted by ECCV 201

    Weakly- and Semi-Supervised Panoptic Segmentation

    Full text link
    We present a weakly supervised model that jointly performs both semantic- and instance-segmentation -- a particularly relevant problem given the substantial cost of obtaining pixel-perfect annotation for these tasks. In contrast to many popular instance segmentation approaches based on object detectors, our method does not predict any overlapping instances. Moreover, we are able to segment both "thing" and "stuff" classes, and thus explain all the pixels in the image. "Thing" classes are weakly-supervised with bounding boxes, and "stuff" with image-level tags. We obtain state-of-the-art results on Pascal VOC, for both full and weak supervision (which achieves about 95% of fully-supervised performance). Furthermore, we present the first weakly-supervised results on Cityscapes for both semantic- and instance-segmentation. Finally, we use our weakly supervised framework to analyse the relationship between annotation quality and predictive performance, which is of interest to dataset creators.Comment: ECCV 2018. The first two authors contributed equall

    The PASCAL Visual Object Classes Challenge: A Retrospective

    Get PDF
    Everingham M., Eslami S.M.A, Van Gool L., Williams C.K.I., Winn J., Zisserman A., ''The PASCAL visual object classes challenge: A retrospective'', International journal of computer vision, vol. 111, no. 1, pp. 98-136, January 2015.status: publishe

    The PASCAL Visual Object Classes (VOC) Challenge

    Get PDF
    The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension. © 2009 Springer Science+Business Media, LLC

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    BACKGROUND: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. METHODS: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. FINDINGS: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96-1·28). INTERPRETATION: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. FUNDING: National Institute for Health Research Health Services and Delivery Research Programme

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    Background: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. Methods: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. Findings: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96–1·28). Interpretation: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. Funding: National Institute for Health Research Health Services and Delivery Research Programme

    Evaluating Image Segmentation Algorithms Using the Pareto Front

    No full text
    Abstract. Image segmentation is the first stage of processing in many practical computer vision systems. While development of particular segmentation algorithms has attracted considerable research interest, relatively little work has been published on the subject of their evaluation. In this paper we propose the use of the Pareto front to allow evaluation and comparison of image segmentation algorithms in multi-dimensional fitness spaces, in a manner somewhat analogous to the use of receiver operating characteristic curves in binary classification problems. The principle advantage of this approach is that it avoids the need to aggregate metrics capturing multiple objectives into a single metric, and thus allows trade-offs between multiple aspects of algorithm behavior to be assessed. This is in contrast to previous approaches which have tended to use a single measure of “goodness”, or discrepancy to ground truth data. We define the Pareto front in the context of algorithm evaluation, propose several fitness measures for image segmentation, and use a genetic algorithm for multi-objective optimization to explore the set of algorithms, parameters, and corresponding points in fitness space which lie on the front. Experimental results are presented for six general-purpose image segmentation algorithms, including several which may be considered stateof-the-art
    corecore